

OVERVIEW

- Information Contained on a Map
- Map Colors
- Contour Lines
- Measuring Distance
- Locate Position

Lensatic Compass

- Orientation of the Map

Map Information

- Purpose: Provides information on the existence, the location, and the distance between ground features
- Definition: A geographic representation of the earth's surface drawn to scale as seen from above

Map Characteristics

Designed to show common info

- Location of ground objects
- Populated areas
- Routes of travel
- Communications Lines
- Extent of vegetation cover
- Elevation and relief of the earth's surface

Map Care

Maps are printed on paper and require protection from:
Water
> Mud
> Tearing

- When marking:

Use lighter lines which are easily erased without smearing
If trimming the map:
Be careful not to cut any of the marginal information

Tactical Significance

Maps must be protected because they can hold tactical information:

Friendly Positions
Supply Points

Map Illustrations

- Mapmakers use standard symbols

They represent natural and manmade features

- Resemble as close as possible, the actual features but as viewed from above

Margin Information

All maps are not the same, so it becomes necessary every time a different map is used to examine the marginal information carefully

Margin Information

Includes:

- Margin of Information
- Sheet Name
- Series Name
- Series Number
- Scale Notation
- Edition Number
- Index to Boundaries

Margin Information

- Contour Interval:
- Appears in the center lower margin
- States the vertical distance between adjacent contour lines on the map

Margin Information

Grid Box:

Gives basic instruction on reading grids in determination of specific points on the map

Margin Information

Declination Diagram:

It is located in the lower left margin of the large scale on the map and indicates the angular relationship of:

Margin Information

True North:

- A line from any position on the earth's surface connects at the North Pole
- Unlike grid lines, all lines of longitude are true north lines

MN = Magnetic North
GN = Grid North
A = True North

Margin Information

Magnetic North:
The direction to the North Magnetic Pole, as indicated by the north seeking needle of a magnetic compass
The North
Magnetic Pole is

located in Canada at Hudson Bay.

Margin Information

Grid North:

. The north that is established by the vertical grid lines on the map

- The variation between grid north and true north is due to the curvature of the earth

Margin Information

Grid Magnetic (GM) Angle:

- The GM angle is used to convert magnetic azimuth to grid azimuth and vice versa

MN = Magnetic North
GN = Grid North
A = True North

Margin Information

Grid Magnetic (GM) Angle:

- Determine the Grid azimuth with a protractor, measuring from Grid North
- Magnetic Azimuth is taken from a compass and measured from Magnetic North
- Note: To convert one azimuth to the other, simply read the directions in the declination diagram

Margin Information

Legend:

Located in the lower left margin

- Illustrates and identifies some of the symbols on the map

Margin Information

Legend note:

Every time a map is used, refer to the Legend to prevent errors in symbol identification

Margin Information

Bar Scales:

- Located at the center bottom of the margin
- Special "rulers", ground distance may be measured directly without having to convert the map scale ratio
- Normally, the scale for meters, yards, statute miles (land) and nautical miles (sea)

Margin Information

Extension scale:

Easy to use, but notice that "zero" is not at the end of the scale.

Map Colors

- To ease the identification of features on the map, the topographic symbols are usually printed in different colors, with each color identifying a class of features

Map Colors

The colors vary with different types of maps, but on a standard, large scale, topographic map, there are five basic colors:

	$>$ Black
	$>$ Red
	$>$ Blue
	$>$ Green
	$>$ Red $/$ Brown

Map Colors

BLACK

- Used to identify the majority of cultural or man made features:
Buildings
>Bridges
Roads not shown in red

Map Colors

RED

- Main roads, built up areas, and special features such as dangerous or restricted areas

Map Colors

BLUE

- Water features

Lakes
>Rivers
-Swamps
Streams

Map Colors

```
Green
```

- Identifies
vegetation
- Woods

Orchards

Map Colors

Red / Brown

- All landforms:

Contours
$>$ Fills
Cuts

Map Colors

Occasionally other colors may be used to show special information. These will be indicated in the margin for information.

Contour Lines

- Most common way of indicating elevation and relief on maps
- A line representing an imaginary line on the ground, along which all points are at the same elevation

Contour Lines

- Printed red-brown, starting at zero elevation
- Every fifth contour line is a heavier brown line
- These heavy lines are known as index contour lines. Also, some place along this heavy brown line, the elevation is given

Contour Lines

Spacing of Contour Lines:

- Indicate the nature of the slope
- The closer the contour lines, the steaper the slope

Land Formations

Hill:

- A point or small area of high ground

Land Formations

Valley:

A stream course bordered on the sides by higher ground
Contours indication a valley are "U" shaped, and the curve of the contour crossing always points up

Land Formations

Draw:

A less developed stream in which there is essentially no level ground, therefore, has little or no maneuver room
The ground slopes upward on each side and towards the head of the draw, contours indicating a draw are "V" shaped, with the point of the "V" toward the head of the draw

Land Formations

Ridge:
A line of high ground, with normally minor variations along its crest
The ridge is not simply a line of hills, all points of the ridge crest are higher that the ground on both sides of the ridge

Land Formations

Saddle:

A dip, or low point along the crest of a ridge

- A saddle is not necessarily the lower ground between two hilltops, it may simply be a dip or break along an otherwise level ridge rest

Land Formations

Depression:

- A low point or sinkhole, surrounded on all sides by higher ground

Land Formations

Cliff:

- A vertical, or near vertical, slope

Measuring Distance

Straight Line Distance:

Distance between 2 points

Measuring Distance

Curved or Irregular Distance:

- Measure distance along:

A winding road
Stream
Any other curved line

Pace Count

Used to keep a record of ground distance

- Record your count in 100-meter increments
- Step off with your left foot and count every time the left foot hits the deck

Record your 100-meter increments by putting a knot in a rope or piece of string

Protractor

Tool used to locate the position on a map.

- Index Mark:

Center of protractor from which all directions are measured

Degrees:
Graduated in 1° tick marks ($0^{\circ}-360^{\circ}$)
$0^{\circ}-180^{\circ}$ is called Base Line

Base Line

The Grid System

- The protractor is used in conjunction with the maps grid system to locate position (s).
- Tells someone where specific locations or points are
- A network of lines, in the form of squares placed on the face of the map

The Grid System

- Squares are somewhat like the blocks formed by the street system of a city
- The "streets" in a grid all have very simple names
- The names are all numbers

The Grid System

- Every tenth line is made heavier in weight
- This will help you find the line you are looking for
- Each grid line on the map has its own number

The Grid System

- Four digit numbers identify a 1,000 square meter grid square
- Six digits identify:

100-meter grid square

Eight digits identify:
10-meter grid square

The Grid System

Map Reading Rule:

Read Right and Up

Lensatic Compass

- The primary instrument used to determine and maintain direction during land navigation

Lensatic Compass Parts

- Thumb loop
- Short Luminous line
- Luminous sighting dots
- Luminous arrow, "Magnetic North"
- Lanyard
- Sighting wire
- Graduated straight edge

Lensatic Compass Precautions

- Handle with care
- Reading should never be taken near visible masses of metal or electrical circuits

Lensatic Compass Precautions

- In cold weather, always carry the compass in its pouch, outside of your outer layer of clothing

Compass Terms and Concepts

Azimuth:

An angle measured in a clockwise direction from a north base line

Compass Terms and Concepts

Grid Azimuth:

- The heading due east is an azimuth of 90°
> South $=180^{\circ}$
- West $=270^{\circ}$

North $=360^{\circ}$ or 0°

- When using an azimuth, the point from which the azimuth originates is imagined to be the center of the azimuth circle

Compass Terms and Concepts

Obtaining A Grid Azimuth:

- Draw a line to two points
- Place the index of the protractor on point A
- Ensure the base line is parallel to the north south grid lines

Compass Terms and Concepts

Obtaining A Grid Azimuth:

- Read the inside scale
> (Degree scale)
- This is the grid azimuth from point A to point B

Compass Terms and Concepts

Back Azimuth:

- The reverse direction of a forward azimuth
- Is comparable to doing an about face
- May be obtained by
> Grid (protractor)
> Magnetic (compass)

Compass Terms and Concepts

Back Azimuth:

- To obtain a back azimuth from an azimuth less than 180° :
> Add 180
- If the azimuth is 180° or more:
> Subtract 180

Compass Terms and Concepts

LAMS acronym for back azimuth

L- Less

A- Add
M- More
If less then add, if more then subtract

S- Subtract

Compass Holding Methods

- The lensatic compass is used to determine or follow magnetic azimuth both day and night
- There are two recommended positions for holding the compass when navigating:
> Compass-to-Cheek
> Center Hold Position

Center-Hold Position

- Recommended for a predetermined azimuth (DAY and NIGHT)

Compass Use at Night

All the luminous features on the compass will be used One click on the bezel ring equals;

Three (3) Degrees

ORIENTATION OF A MAP

Orientation of a Map

- A map is oriented when it is in position with its north and south corresponding to north and south on the ground

Using A Compass:

- Keep compass horizontal
- Place Compass straight edge parallel to a NorthSouth grid with the cover of the compass pointing to the top of the map

Orientation of a Map

Without A Compass: Terrain Association

- Find linear features common to the ground and the map
> Roads
> Railways
> Fence lines
> Power lines etc.

Determining Location with Map and Compass

Inspection and Estimation:

- Easiest and most simple
- Survey roads and topographical features
- Orient map to the ground
- Identify prominent landmarks

Determining Location with Map and Compass

$\underline{90^{\circ} \text { Offset Method: }}$

- To bypass enemy positions or obstacles and stay oriented
- Detour around obstacle by moving in right angles, use this formula:
$>$ Right, add 90°
$>$ Left, subtract 90° (RALS)

PRACTICAL APPLICATION

